50 YEARS PROTECTING LIVES AND PROPERTY

CONSTANT FLOW TECHNOLOGY™ Overview

I. Use of inert gases

- Why to use
- Inert-based firefighting systems

II. Constant flow technologies

- Inert-Siex[™] CFT
- Comparison
- Advantages

III. Conclusions

WHY TO USE INERT GASES?

Excellent fire fighting effectiveness

✓ The only <u>truly ecologic</u> gas: zero negative effects

	Halon 1310	HFC-23	HFC-227ea	Novec	Inert gases
Ozone Depletion Potential (ODP)	10	0	0	?	0
Greenhouse Warming Potential (GWP)	6.900	14.800	3.800	?	0
Atmospheric lifetime	65	243	36,5	?	n/a

WHY TO USE INERT GASES?

- ✓ Best value agent
 - Up to 10 times less expensive (chemical gases)
 - 99,99% pure, dry and cheap inert gas stored in cylinders
 - Low maintenance and recharge costs
- ✓ Long distance capacity
 - 120 200 m (130 220 yd)
 - Multiple protections with one bank (selector valves)

WHY TO USE 300 BAR?

✓ More compact hardware

Pressure ⇒ -33 % increase cyl.

Volume

→ -43 % No. cyl.
increase +75% capacity

WHY TO USE 300 BAR?

Pressure & volume increase

→ -60 % No. cyl.+75 % capacity

0,77m (2,53 ft)

- More cost efficient
- ✓ Less space consumed

IMPACT OF STANDARD INERT SYSTEMS

Restrictor regulation

- Fixed calibration (hydraulic calculation)
- As storage pressure drops so does outlet pressure
- → Not efficient pattern
- → Pipework sized to a **high but brief** pressure

Constant Flow Technology

- Fixed outlet pressure, adjustable opening
- As storage pressure drops, outlet area increases
- → Very efficient pattern
- → Pipework sized to a lower and constant pressure

IMPACT OF STANDARD INERT SYSTEMS

How does this election affect systems?

- Restrictor
 - Everything is sized to a big but brief pressure:
 - » Larger diameters
 - » More resistant pipes: SCH160/80, thicker, heavier, more expensive
 - » Larger venting areas

Constant Flow technologies

- Rational and optimized design
- sized to a lower and constant pressure:
 - » Smaller diameters: ½" less, so costs go down
 - » Less resistant pipes: SCH40, lighter, manageable, cheaper
 - » Venting areas reduced
 - » Less noisy discharges

Do all constant flow valves work the same?

NO, our pneumatic regulation system has a much better performance

	SIEX CFT	Others
Regulation	PneumaticStatic equilibrium	MechanicalDynamic equilibrium
Pros	 ✓ No variations in flow ✓ Consistent behaviour ✓ Customized discharge pressure 	
Cons		Pressure and flow varyNon-predictable behaviour

CONSTANT FLOW TECHNOLOGIES

Siex valve, model RD

- Static equilibrium
 - » Chambers not communicated
- Pneumatic regulation via cartridge
 - Outlet pressure = Cartridge x factor
 - » HIGHER FLOW RATIO
 - » Pneumatic regulation, gas behaves always in the same way
 - » No extra costs (calibration)
 - » Eliminates drawbacks from restrictor systems

150-200-300 bar

CONSTANT FLOW TECHNOLOGIES

Competitor 1: Dynamic equilibrium

- Low flow rate
- Peak at 100 bar, then quite constant
- Based on springs: each valve works different

Competitor 2: Dynamic equilibrium

- Upper chamber fills and empties → irregular
- Spring performance not tested in a long run
- Safety risks when closed pipe sections

SIEX CFT™: Static equilibrium

- Consistent and reliable pattern
- Adjustable output pressure
- Safety: outlet pressure never exceeds cartridge's

CONSTANT FLOW TECHNOLOGIES

	SIEXCFT	Competitor 1	Competitor 2
Equilibrium	- Static: no variations	- Dynamic: peak (100bar)	- Dynamic: huge variations
Eq. mech.	Nitrogen cartridgeSealed regulation chamber	- Mechanic: spring- Connected chambers	- Mechanic: spring- Fluctuating chambers
Discharge pressure	 ANY. Easily readjustable Independent from storage; cyl. does not affect discharge equilibrium. 	 Fixed: 300bar → 60bar 200bar → 40bar Cylinder affects equilibrium 	- Fixed: 300bar → 60bar 200bar → 40bar Cylinder affects equilibrium
Reliability	- CONSISTENCY, the only valve that warrants identical behavior	- Springs not calibrated - Each works DIFFERENT	- Springs not calibrated - Each works DIFFERENT
Safety	- Stabilizes at 60bar in case of blocked output	- No accidental discharges (cup off)	- Uncontrolled discharge if outlet is blocked: 300bar
	- Upper outlet- Whole system approvalsUL, FM (hardw. & softw.)	- Side outlet	- Side outlet

OTHER ADVANTAGES

- UL / FM approvals
 - Better systems behaviour: Lower design concentrations: -5% to -10%
 - Additional components also approved: safety, control, etc.
- Combi Manifold (CMS™)
 - Lighter, manageable
 - Pressure losses reduction
 - Meccano configuration: extreme flexibility
- Others
 - Upper valve output: Installation flexibility

CONCLUSIONS

SUMMARY OF ADVANTAGES

INSTALLATION

- ✓ CHEAPER installation costs
- ✓ Smaller piping
- √ FLEXIBLE installation

APPROVALS

- ✓ UL listed
- ✓ FM approved
- √ VdS approved
- ✓ COMPLETE range of approved products

ECOLOGY

- ✓ The most ENVIRONMENTALLY FRIENDLY gas
- ✓ Materials REDUCTION
- ✓ The best ALTERNATIVE for the future

TECHNOLOGY

- ✓ THE SAFEST technology
- ✓ CONSISTENT
 warranted behaviour

QUESTIONS?

Thank you for your time